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We investigate the bifurcation properties and pattern selection in Rayleigh-Bénard convecting binary mix-
tures for parameter combinations that are typical for colloidal fluids using the Galerkin method. In such fluids
the typical Lewis numbers and separation ratios differ by orders of magnitude from the values found in
molecular mixtures like alcohol/water. We study stationary rolls, square and crossroll patterns for positive
separation ratios, and traveling waves for negative separation ratios. Results are compared to those for mo-
lecular mixtures.

DOI: 10.1103/PhysRevE.75.036203 PACS number�s�: 47.54.�r, 47.20.Bp, 47.57.J�

I. INTRODUCTION

A large number of papers deal with the Rayleigh-Bénard
convection in binary molecular fluids �1–3�. The rich bifur-
cation scenarios that emerge from adding the concentration
field as a new dynamic entity have made this system a popu-
lar model system in the field of pattern formation in hydro-
dynamics.

In binary mixtures, the concentration field couples into
the Navier-Stokes equation via the concentration dependent
density in the buoyancy force term. Since advection and dif-
fusion alone would lead to an equilibration of the concentra-
tion field leaving an effectively one-component system a
back-coupling is also necessary. This back-coupling is pro-
vided by the Soret effect, the driving of concentration cur-
rents by thermal gradients.

The Soret effect can have either a stabilizing or a desta-
bilizing effect on the conductive state depending on whether
the Soret generated concentration currents enhance the ther-
mally induced density gradients �positive Soret effect� or di-
minish them �negative Soret effect�. Thus, in the typical case
of a positive thermal expansion coefficient, a positive Soret
effect means that the lighter component is driven into the
direction of higher temperatures and thereby further destabi-
lizes a layer heated from below.

In pure liquids the first convective structure to be found
takes the form of stationary rolls—the Bénard rolls. The mix-
ture’s bifurcation scenario is much more interesting: For
positive Soret effects structures like rolls, squares, and sta-
tionary and oscillatory crossrolls have been studied experi-
mentally and theoretically �4–10� at small and moderate
heating rates. For negative Soret effect there exist besides
rolls also traveling wave structures, and related structures
like standing waves, localized traveling waves, and wave
fronts �11–18�.

In binary gas mixtures the time scale of concentration
diffusion is comparable to the heat diffusion and concentra-
tion perturbations are easily diffused away. When further-
more the Soret effect is weak the mixture resembles a pure
fluid with the same simple bifurcation scenario. Crossrolls
and squares for example do not play a role here.

But such patterns can be observed in molecular liquid
mixtures like alcohol/water. Here the concentration diffusion

is much slower, and the time scale is about a factor 100
larger than that of the thermal diffusion. This leads to narrow
boundary layers at the plates that must be properly resolved
in the simulation. Simulating liquid mixtures therefore re-
quires more numerical resources than simulating pure fluids.

In recent years Rayleigh-Bénard convection in colloidal
solution, i.e., binary mixtures of colloidal particles and the
carrier liquid has become a focus of interest �19�. Due to the
large size of the colloidal particles in the nanometer range
the time scale of concentration diffusion is even larger, about
104 times the thermal time scale or two orders of magnitude
larger than for molecular liquids. Furthermore, colloids were
found to have a much stronger Soret effect than molecular
mixtures, again by about two or even three orders of magni-
tude �20�. Numerical simulations of rolls and transient oscil-
latory structures using a medium-sized Galerkin model were
performed in �21,22�.

The goal of this paper is to investigate the bifurcation
diagram of binary mixtures for these extreme parameter
combinations and to identify the patterns that should be ob-
served in experiments. The paper is organized as follows: In
Sec. II we will briefly discuss the underlying equations, the
Galerkin method that we used for numerical investigations,
and the bifurcation scenario as it is known from molecular
mixtures. In Sec. III we will focus on small amplitude con-
vection and demonstrate the existence of power laws for the
critical Rayleigh number and the initial slope of stationary
structures. In Sec. IV we will discuss the full nonlinear con-
vection for positive �. We will identify the parameter regions
of stable roll patterns, squares, and crossrolls that exist here.
In Sec. V negative � will be discussed, and the bifurcation
diagram of rolls and traveling waves. We will summarize our
results in Sec. VI.

II. FOUNDATIONS

A. System and basic equations

We consider a horizontal layer of a binary fluid mixture of
thickness d that is heated from below in a homogeneous
gravitational field, g=−gez. A vertical temperature gradient is
imposed by fixing the temperature
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T = T0 ±
�T

2
at z = �

d

2
, �2.1�

e.g., via highly conducting plates in experiments, i.e., �T
�0, throughout this work. We consider the plates to be infi-
nitely extended, rigid, and impermeable. T0 is the mean tem-
perature of the fluid layer.

In the quiescent conductive reference ground state of the
fluid layer the temperature has a linear vertical profile

Tcond�z� = T0 −
�T

d
z . �2.2�

If there is a Soret effect then this temperature gradient gen-
erates a concentration gradient,

Ccond�z� = C0 + STC0�1 − C0�
�T

d
z . �2.3�

Here C=�1 / ��1+�2� is the mass concentration of, e.g., the
lighter component 1, C0 is its mean value, and ST is its Soret
coefficient. The mass concentration 1−C=�2 / ��1+�2� of the
heavier component 2 would then be 1−Ccond�z� in the con-
ductive state with −ST being the Soret coefficient of compo-
nent 2. Thus, e.g., for negative ST the lighter �heavier� com-
ponent of the mixture is driven into the direction of higher
�lower� temperature. For an ordinary thermal expansion co-
efficient ��0 this means an increase of the density gradient
and a further destabilization of a layer heated from below.

Convection is described in terms of the fields of T, C,
velocity u= �u ,v ,w�, total mass density �=�1+�2, and pres-
sure P. In the balance equations connecting these fields we
scale lengths and positions by d, time by the vertical thermal
diffusion time d2 /�, temperature by 	� /�gd3, concentration
by 	� /
gd3, and pressure by �0�2 /d2. Here �0 is the mean
density, � the thermal diffusivity, 	 the kinematic viscosity,
and �=−�1/���� /�T and 
=−�1/���� /�C are thermal and
solutal expansion coefficients, respectively.

Within the Oberbeck-Boussinesq approximation the trans-
port coefficients � ,	 and the expansion coefficients � ,
 are
taken at the mean values T0 ,C0 , P0 of the thermodynamic
variables. Then the balance equations read �2,23�

� · u = 0, �2.4a�

��t + u · ��u = − �p + ���� + c�ez + �2u� , �2.4b�

��t + u · ��� = Rw + �2� , �2.4c�

��t + u · ��c = R�w + L��2c − ��2�� . �2.4d�

Here �, c, and p are the reduced deviations of temperature,
concentration, and pressure, respectively, from the conduc-
tive profiles. The Lewis number L is the ratio of the concen-
tration diffusivity D to the thermal diffusivity �, therefore
measuring the velocity of concentration diffusion. The
Prandtl number � is the ratio of the momentum diffusivity 	
and �:

L =
D

�
, � =

	

�
. �2.5�

The Rayleigh number

R =
�gd3�T

	�
�2.6�

measures the thermal driving. The separation ratio

� = −



�
STC0�1 − C0� = −




�

kT

T0
�2.7a�

is proportional to kT thus incorporating the Soret coupling
between temperature and concentration fields. Here kT
=T0C0�1−C0�ST is the so-called thermodiffusion ratio. Note
that

� =



�
��C

�T
�

cond
=

��/�C

��/�T
��C

�T
�

cond
�2.7b�

is the solutally induced vertical density change divided by
the thermally induced density change, say, in the conductive
state. The value of � does not depend on the component
chosen to define the concentration. If one defines C as the
concentration of the heavier component, the more intuitive
choice in the case of colloids like ferrofluids, instead of the
lighter component, as it is traditionally done for molecular
mixtures, both 
 and ST change sign, such that the products

ST and 
kT remain unchanged.

Typically �=O�10� in liquid mixtures, and compared to
the other parameters the exact value has only a weak influ-
ence on the convection for �1. We will always use �
=10 in our calculations. In liquid molecular mixtures a typi-
cal value for the Lewis number is 0.01, whereas in colloids L
can easily reach values as low as 10−4. The much slower
diffusion in colloids is a consequence of the large size of
colloidal particles compared to small molecules making them
less susceptible to Brownian motion. � finally is generally
much larger in colloids than in molecular mixtures. Values of
O�10� and larger have been found �20�. In comparison, in
alcohol/water one finds values of � in the range between
−0.5 and 0.5 depending on the mean concentration and tem-
perature. The large values for � have also been explained as
being caused by the large particle size �24�.

For the velocity field we impose realistic no slip boundary
conditions u=0 at the plates. The velocity field is written as

u = � � � � �ez + � � �ez, �2.8�

which automatically fulfills Eq. �2.4a�.
Equations for the potentials � and � can be derived by

taking the third component of the rotated and double-rotated
Navier-Stokes equation �2.4b�. This also eliminates the pres-
sure term. The boundary conditions translate to ��z�
=�z��z�=��z�=0 at z= ±1/2. Since the plates are kept at
constant temperature it is ��z= ±1/2�=0. At the imperme-
able plates the vertical concentration current vanishes, i.e.,
�z�c−���=0 there. Thus we use instead of c the combined
field
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� = c − �� . �2.9�

An equation for � can be easily derived from Eqs. �2.4c� and
�2.4d�.

B. Numerical methods

To find the convective solutions and to test their stability
we used the Galerkin method. For the nonpropagating struc-
tures the fields X=� ,� ,� are expanded into orthogonal
modes in the following way:

X�x,y,z;t� = �
lmn

Xlmn�t�cos�lkx�cos�mky�fn
X�z� . �2.10�

For � the lateral cos expansion must be replaced by an ex-
pansion in sin functions. The fn

X form a complete orthogonal
set of functions in z that fulfills the boundary conditions for
the field X. We use Chandrasekhar functions �25� for � and
otherwise trigonometric functions with a growing number of
nodes. The lateral wave number k of the patterns enters into
the calculation as a fifth parameter.

The expansion is cut off at sufficiently high indices
l ,m ,n. We took all � and � modes into account for which l
+m+n�N with N=60 for two-dimensional structures and
N=28 for three-dimensional structures. � and � can in gen-
eral be approximated well with less modes: Here we used
N=30 and N=14, respectively.

Inserting the ansatz into the basic equations and project-
ing them onto the orthogonal modes results in a nonlinear
system of coupled ordinary differential equations of first or-
der in time for the Xlmn�t�. Those stationary solutions of this
system that were of interest were obtained using the Newton-
Raphson algorithm. In addition stability analyses of these
stationary states were done: After linearizing the equations
around the fixed points the resulting eigenvalue problem was
solved numerically.

Three different nonpropagating structures were investi-
gated: Rolls, squares, and crossrolls. All of them fulfill the
mirror-glide symmetry

X�x,y,z� = ± X�x + �/k,y + �/k,− z� , �2.11�

which allows one to set half of the modes to zero. Further-
more, for two-dimensional structures like stationary rolls,
say, with axes oriented in y direction all amplitudes Xlmn with
m�0 can be set to zero. The � field is not needed for these
structures at all. Squares have a x↔y symmetry such that
Xlmn= ±Xmln. Here the minus sign holds for �. The third
structure, the crossrolls, exhibit no additional symmetry.

As a fourth structure traveling waves �TWs� of laterally
propagating rolls are discussed in this paper. After transient
relaxation processes have died out TWs move with constant
amplitude and constant phase velocity � /k, say, in x direc-
tion. Thus they can be described by

X�x,y,z;t� = �
l,n

Xl0neil�kx−�t�fn
X�z� + c.c. �2.12�

But additionally, a lateral velocity component

uMF�z� = �
n

un
MFfn

MF�z� �2.13�

is needed to describe a mean flow. This simple form of the
TW’s time dependence allows one to apply the Galerkin
method. Here, however, the amplitudes Xl0n are complex for
l�0. Only one amplitude, e.g., �101, can be assumed to be
real thereby fixing the phase. Instead of the imaginary part,
the TW frequency � enters as a new unknown.

C. Bifurcation of stationary rolls

In this section we briefly review the bifurcation properties
of stationary rolls in molecular fluids. In pure fluids ��=0�
convection starts at a critical Rayleigh number Rc��=0�
�1708. The wave number of the critical mode is kc

0

�3.116 �26,46�. The first pattern to appear takes the form of
parallel convection rolls with alternating direction of rota-
tion, known as Bénard rolls that bifurcate forward out of the
conductive state �27–29�. Similar roll patterns also play a
role in binary mixtures for both positive and negative �.

Figure 1 shows the bifurcation diagrams of stationary
rolls for L=0.01, k=kc

0, and three different �. We have plot-
ted the leading velocity amplitude versus the reduced Ray-
leigh number

r = R/Rc�� = 0� . �2.14�

We use r throughout this paper as a control parameter. For
the pure fluid the shape of the curve can be well approxi-
mated in the r range of Fig. 1 by its initial behavior 	
r−1
close to onset.

Rolls bifurcate for �=0.2 at much lower r out of the
conductive ground state than in pure fluids because for posi-
tive � the Soret induced solutal contribution to the local
density enhances the buoyancy and thus destabilizes the qui-
escent fluid. For the parameters of Fig. 1 two different re-
gimes can be clearly distinguished. In the so-called Soret
region at r�1 the convection amplitude is very low before it
curves upwards at r�1. Thereafter, the stronger convective

FIG. 1. Bifurcation diagram of convection amplitude versus r
for stationary rolls with wave number k=kc

0 in pure fluids ��=0�
and mixtures with negative and positive Soret coefficients, �=10,
and L=0.01.
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flow leads to a better mixing such that at r�1, i.e., in the
Rayleigh region the bifurcation behavior becomes very simi-
lar to that of the pure fluid.

On the other hand, for negative � the ground state is
stabilized and the bifurcation is backwards except for sepa-
ration ratios very close to zero. In fact, for �=−0.2, the sta-
bilization is so strong that stationary rolls cannot grow out of
the quiescent fluid starting from infinitesimal perturbations:
The roll bifurcation threshold has moved already up to r
=�, the solution branch for stationary rolls in Fig. 1 is de-
tached from the quiescent state, and it requires a finite initial
amplitude to start the growth of stationary rolls. As long as
only nonoscillatory perturbations are considered, i.e., if one
suppresses in particular the phase oscillations that lead to
TWs the upper branch of the short dashed curve in Fig. 1
would be stable coexisting with the stable ground state while
the lower branch to the right of the saddle node bifurcation is
amplitude unstable. As for �=0.2 the mixture convection
resembles very closely the pure fluid convection when the
convective mixing becomes strong enough.

III. SMALL-AMPLITUDE STATIONARY CONVECTION
FOR ��0

Before convection in colloidal solutions at moderate and
high amplitudes is discussed we address briefly convection
with small amplitudes close to onset. Note that small-
amplitude convection is typically unstable for ��0—except
when � is very close to zero—because of the backwards
bifurcation behavior of stationary rolls as well as of TWs.
We therefore restrict the discussion in this section to positive
separation ratios.

A. Bifurcation thresholds

The critical wave number at onset of convection is kc=0
when ����=131L / �34−131L� �30�. Thus, for L�1, one
has ���3.85L. For typical molecular liquid mixtures and
even more so for colloidal liquids the convection at onset
seems to form a single cell of the size of the container �31�.
With increasing Rayleigh numbers, on the other hand, the
observed wave number has been found to quickly approach
values that are more similar to the critical one, kc

0, of pure
fluids �8,32�.

In Fig. 2 the reduced stability thresholds of conduction
against bifurcation of stationary rolls, rstab�k ,� ,L�, are
shown as functions of L for several � values for two fixed
wave numbers: k=0 and k=kc

0 as a representative example
for a finite wave number. Note that rstab does not depend on
�. The plots show that rstab follows a power law in L and �
of the form

rstab�k,�,L� = h�k�
L

�
�3.1�

with a prefunction h�k� that takes the values h�0��0.42 and
h�kc

0��0.63. For k=kc
0 there are deviations from this power

law behavior at large L and small � that are, however, not
relevant here. Note that the threshold rstab is practically zero
for colloidal parameters.

The power law for finite k can also be derived analyti-
cally. The linear stability analysis of the ground state �30�
leads to a relation between rstab, k, and the other parameters
of the form

f�k, r̃stab� = pg�k, r̃stab� . �3.2�

Here p=� / �L�1+��� and

r̃stab = �1 + � + �/L�rstab. �3.3�

In the limit L→0, �→�, p approaches infinity. In order to
fulfill Eq. �3.2�, r̃stab must approach a value r̃stab,0 in this
limit, such that g�k , r̃stab,0�=0. It is then rstab� r̃stab,0 L /�
=const L /�.

For k=0 a more careful analysis is necessary since then
both f�k , r̃stab� and g�k , r̃stab� go to zero for k→0. It is known
that the power law rstab=h�k�L /� holds for arbitrary � and L
in this case with an exact value of h�0�=720/Rc

0 �30�.

FIG. 2. Reduced stability thresholds of the conductive state,
rstab�k ,� ,L�, against nonoscillatory convection with wave numbers
k=0 �top� and k=kc

0 �bottom� versus L. Between thick lines �
changes by a factor of 10.
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B. Initial slope of the Nusselt number N„r…

An important nonlinear quantity that characterizes con-
vection with small amplitudes close to onset is the initial
slope

S =
�N

�r
at r = rstab �3.4�

of the growth of the Nusselt number N with r. Figure 3
shows the variation of S with L for different � and fixed k
=kc

0 for the case of stationary roll convection. Contrary to the
convective threshold rstab the initial slope S does depend on
� but the dependence on this parameter is weak for �1.

Square patterns while having the same bifurcation thresh-
old rstab as roll patterns have a slightly different Nusselt num-
ber. But this difference is too small to be seen in Fig. 3. For
L�0.01 the ratio of the corresponding initial slopes is about
constant, Srolls /Ssquares�0.980, and then it increases with
growing L to �0.983 at L=0.1. The ratio depends very
weakly on �.

Except for large L and small � the initial slopes S of the
Nusselt numbers obey also a power law, namely S	L�. This
result too can be reasonably well explained within a few-
mode model. From �33� one can derive an expression

S =
242

387
�L �3.5�

in the limit L→0, where 242/387=0.625. . . agrees well with
the value of 0.631 we found when fitting to the data at small
L.

IV. ROLLS, SQUARES, AND CROSSROLLS FOR ��0

A. Bifurcation and stability scenario

At positive � rolls are stable close to onset only if L is
sufficiently large and � is small �34�. In this case the con-
centration differences that are generated by the Soret effect
are weak. Moreover, they are diffused away efficiently. Thus
the fluid still behaves qualitatively like a pure fluid even
when advection is small, i.e., even for small convection am-

plitudes. For smaller L or larger �, however, rolls turn out to
be unstable near onset against a square pattern that emerges
at the same bifurcation threshold. The square structures can
be thought of as being a superposition of two equal strength
perpendicular roll sets that we shall call x rolls and y rolls for
short. The x- and y-roll convection amplitude of the squares
is smaller than the amplitude of a pure roll state at the same
control parameters.

At higher Rayleigh numbers when the mixing is stronger
rolls become stable again. In between, a third stationary
structure exists: The crossrolls which transfer stability from
the squares to the rolls. Crossrolls can be thought to consist
of two perpendicular roll sets like squares, but with different
amplitudes.

A bifurcation diagram of squares, crossrolls, and rolls is
shown in Fig. 4. The order parameter is the amplitude of one
of the roll sets, say, the rolls in x direction. Near the bifur-
cation point to the square branch the crossroll amplitudes are
similar, but then the difference grows. There are two differ-
ent symmetry degenerate crossroll states: In one case the x
component is the dominant set and the crossroll structure
ends on the solution branch of x rolls. In the other case, the
y component is stronger and the x component becomes
smaller until it vanishes and the crossroll branch ends in the
y-roll branch.

There is a fourth structure that is displayed in Fig. 4: The
oscillatory crossrolls. They exist only at small L but still at
parameters that are easily realizable with alcohol-water mix-
tures. The oscillatory crossrolls bifurcate from the square
branch before the stationary crossroll branch appears. They
end up on the latter in a complex entrainment process �9�. In
the oscillatory crossrolls x- and y-roll amplitudes oscillate in
counterphase such that one of them is alternatingly dominant
with squares appearing twice in such a cycle. The striped
area in Fig. 4 is bounded by the maximal and minimal am-

FIG. 3. Initial slope of the Nusselt number as a function of L for
�=10 and k=kc

0. Between thick lines � changes by a factor of 10.
FIG. 4. Bifurcation diagram of rolls �circles�, squares �squares�,

stationary crossrolls �triangles�, and oscillatory crossrolls �striped
area� for L=0.01, k=kc

0, and �=0.2. Lines with circles, squares, and
upwards pointing triangles denote x-roll amplitudes. Downwards
pointing triangles refer to y-roll amplitudes of the stationary cross-
roll solution. Vertical lines indicate x- and y-roll amplitude varia-
tions of oscillatory crossrolls. Stable �unstable� stationary structures
are represented by solid �dashed� lines and solid �open� symbols.
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plitudes of x and y rolls during one oscillation period. Note
that the minimal amplitudes remain well above zero.

B. Concentration boundary layers

We already have mentioned that the very slow solutal
diffusion together with a very strong Soret effect can be ex-
pected to generate very narrow boundary layers. This bound-
ary layer structure becomes apparent in Fig. 5. The plots
show the concentration field of rolls and squares in the ver-
tical plane at y=0 that contains the maximum upflow and
that extends over one lateral wavelength in x direction. In the
two top plots �L ,��= �0.01,0.1� is typical for molecular liq-
uids. In the two bottom plots values of �L ,��= �10−4 ,10�
were chosen that are typical for colloids.

In all shown cases many modes contribute significantly to
the concentration field giving rise to a very anharmonic pro-
file. In contrast to that, the temperature field at this point can
still be very well described by two �four� modes in the case
of rolls �squares�. For the colloidal parameters the concen-
tration distribution is practically homogeneous except di-
rectly at the plates and between the rolls where concentration
is advectively transported downwards �at the left and right
sides or the plot� or upwards �in the center�.

The boundary layers of the square structures are in gen-
eral broader than those of the rolls as Fig. 5 shows. This is
fortunate, since the simulation of three-dimensional struc-
tures requires a priori more modes than in the two-
dimensional case. But the less pronounced boundary layers
allows one to reduce the resolution, i.e., the number of
modes, especially since squares exist as stable structures
only at smaller r where the boundary layers are broader in
any case.

C. Changes in the bifurcation behavior with varying � ,L

The bifurcation diagrams of rolls for �=10, k=kc
0, and

several �L ,�� combinations are shown in Fig. 6. Again, the

Nusselt number was chosen as order parameter. Since the
Nusselt numbers of squares differ only very slightly from
those of rolls—not only near onset but also at higher r—the
former are not shown here. The same holds true for the sta-
tionary crossrolls in their r interval of existence. The close-
ness of the N�r� curves for the different convection structures
is somewhat unfortunate for experiments with intransparent
liquids that do not allow a direct visual observation of the
convection patterns: Investigating the bifurcation scenario of
the aforementioned stationary convection structures by Nus-
selt number measurements only would be a real experimental
challenge. Odenbach �35� followed a different approach,
measuring the small temperature variations at the plates to
discriminate between square and roll patterns in convecting
ferrofluids.

When the product L� is small, the transition between
Soret and Rayleigh regime is very sharp and the amplitudes
in the Rayleigh region agree well with those of the pure
fluid. This is not the case for large L� where the transition is
rather smooth and where in the Rayleigh region the curves of
N�r� show substantial deviations from the pure fluid Nusselt
number. The reason for these deviations from pure fluid con-
vection is that temperature gradients generate for large �
strong concentration gradients that are not adjectively mixed
away easily when the concentration diffusion is fast, i.e.,
when L is also large.

In Fig. 7 all curves of Fig. 6 except for the limiting cases
��L ,��= �0.01,100� and �L ,��= �0.0001,0.1�� of largest and
smallest L� are again plotted r in one single logarithmic plot.
In this way the variation of N with r in the Soret region
becomes better visible. The curves are grouped in solid and
dashed pairs that share the same value of L�. From pair to
pair it changes by a factor of 
10. This demonstrates that
changing L and � while keeping its product constant does
indeed have only a minor influence on N�r�. Thus, in col-
loids, the effects of the large � and the small L tend to
compensate each other, resulting in bifurcation diagrams that
are very similar to those of molecular liquid mixtures with
similar values of the product L�.

FIG. 5. Concentration field of convective roll and square states
in the vertical x−z plane at y=0 that contains the upflow maximum
and that extends laterally over one wavelength in x direction. Pa-
rameters are �=10, k=�, and r=1, and from top to bottom:
�L ,��= �0.01,0.1�, �0.001, 1�, and �0.0001, 10�. A lighter �darker�
shade of grey denotes a higher concentration of the lighter �heavier�
component. Note the pronounced boundary layer structure for small
L and large �.

FIG. 6. Nusselt number versus r for �=10, k=kc
0, and several

�L ,�� combinations. The parameter that is varied changes by a
factor of 
10 between the curves in each plot.
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D. Phase diagrams

Figure 8 shows an overview of our results concerning the
bifurcation properties at positive � in the form of phase dia-
grams in the r-� plane. For four different small values of L
and a broad range of � we calculated the r values of the
bifurcation thresholds: �i� From squares to oscillatory cross-
rolls, �ii� from squares to stationary crossrolls, and �iii� from
rolls to stationary crossrolls.

Above the dark gray regions in the plots of Fig. 8 rolls are
the stable structures. They lose their stability at the upper
boundary of the gray regions where the stationary crossroll

branch meets the roll branch. Squares, on the other hand, are
stable below the light gray area. The lower boundary of the
light gray area marks the r values where oscillatory pertur-
bations become supercritical and where oscillatory crossrolls
emerge. The boundary between the light gray and the dark
gray area finally is the location where squares lose stability
also against stationary perturbations and where the stationary
crossroll solution bifurcates out of the square solution.

For colloid parameters our nonlinear results for the cross-
roll fixed points become unreliable at higher r—there even in
the largest 3D models that we used the crossroll solution
branch did not end on the roll solution branch anymore.
However, this is a numerical artifact: We verified with more
extensive linear stability analyses of the roll solution branch
that the bifurcation from rolls to stationary crossrolls still
exists. We therefore did not try to calculate the position of
the fourth important bifurcation point in the bifurcation sce-
nario for positive �, i.e., the point where stationary crossrolls
lose stability against oscillatory crossrolls. Oscillatory cross-
rolls can be expected to exist not only in the light gray area,
but also in the lower part of the dark gray area. Stationary
crossrolls, on the other hand, can be expected to be stable
only in the upper parts of the dark gray regions.

Square patterns lose their stability at about r=1 as long as
��30. For larger � this changes very abruptly, reducing the
stability region of squares to a very small stripe directly
above onset. The first instability of squares is then still os-
cillatory but stationary instabilities set in very close by. This
happens at about the same position also in Galerkin expan-
sions that take into account fewer modes than the ones used
in obtaining Fig. 8. We therefore consider it as unlikely that
this feature is an artifact coming from a premature mode
truncation in the Galerkin expansion.

Roll convection gains stability earlier when L is small:
For L=0.0002 the region of stability reaches down almost to
r=1, leaving for ��30 only a small r interval where cross-
rolls exist. Both large and small � seem to favor roll convec-
tion. For fixed L its stability boundary marking the bifurca-
tion threshold to crossrolls has a maximum in r at about
�=2.

V. TW AND STATIONARY ROLL CONVECTION
FOR ��0

For negative separation ratios one can observe not only
stationary but also oscillating convection rolls. The latter ap-
pear in the transient growth at supercritical heating, in spa-
tially extended relaxed nonlinear TW and standing wave
�SW� solutions that branch out of the conductive state at a
common Hopf bifurcation threshold rosc, in spatially local-
ized traveling wave �LTW� states, and in various types of
fronts. TW and LTW convection has been studied experi-
mentally and theoretically for some time �1,14,15,36–44�.
Nonlinear relaxed SW solutions �16,17� and freely propagat-
ing convection fronts �18� that connect subcritically bifurcat-
ing TWs with the stable quiescent fluid were obtained only
recently.

Here we investigate the competition between extended
stationary and TW convection as it can be observed in ex-

FIG. 7. Nusselt number versus r for the parameter combinations
of Fig. 6, i.e., L=10−2−n/2 �n=0, . . . ,4� combined with �
=10−1+m/2 �m=0, . . . ,6� without the extreme combinations �L ,��
= �0.01,100� and �0.0001,0.1�. For a pair of curves that are alternat-
ingly shown by dashed and solid lines the product L� is the same.
From pair to pair it changes by a factor of 
10=3.16.

FIG. 8. �Color online� r-� phase diagrams for squares, oscilla-
tory crossrolls, stationary crossrolls, and rolls for k=kc

0, �=10, and
four different L. Rolls are stable in the upper region; squares are
stable in the lower. Crossrolls exist in the gray regions. See text for
further details.
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periments in narrow rectangular and annular channels which
enforce the roll axes to be oriented perpendicular to the long
sidewalls. These stuctures can efficiently be described in the
two-dimensional vertical x−z cross section in the middle of
the channel perpendicular to the roll axes ignoring variations
in axis direction. Furthermore, these convection structures
have relevant phase gradients only in x direction thus causing
effectively one-dimensional patterns.

Figure 9 shows a bifurcation diagram for both structures
in the case of a typical molecular liquid mixture. The oscil-
latory threshold rosc precedes the bifurcation to stationary
rolls at rstat. In fact, for the parameters �=−0.2, L=0.01 of
Fig. 9, the bifurcation threshold for stationary rolls has al-
ready moved up to �: rstat increases monotonously from 1 at
�=0 to � at �=−L / �1+L� �30�.

Both convection structures bifurcate backwards. The TW
phase velocity decreases with growing amplitude until the
TW solution branch meets with zero phase velocity the upper
stationary roll branch in Fig. 9 at some reduced Rayleigh
number r*. Only after this bifurcation point the stationary
solution is stable. For L=0.01 the heating rate r* grows with
increasing ��� and finally diverges for ��−0.45 such that the
whole stationary branch becomes unstable �see Fig. 11 be-
low�.

At ��−1 the stabilizing effect of the concentration gra-
dient overcompensates the destabilizing effect of the thermal
gradient. For such a strong negative separation ratio no os-
cillatory bifurcation threshold rosc�� exists for any param-
eter combination. Then the ground state is linearly stable and
neither stationary nor TW roll solutions with arbitrarily
small convection amplitudes exist anymore. However, when
convection is strong enough it can advectively mix, reduce,
and equilibrate the concentration field and thereby self-
consistently sustain itself in an environment that is mixed by
the convective flow. Therefore, the stationary and oscillatory
roll branches still exist but without connection to the ground
state. As in the case of ��0 a small L is required to allow
the advective mixing to be effective when ��� is large.

This explains qualitatively that, e.g., the stationary roll
branches depend only very weakly on the product L� as the

lower plot of Fig. 10 demonstrates. There the Nusselt num-
ber is shown for �L��=10−4 and for separation ratios that
span over two orders of magnitude. There is however some
variation in the lower branch as can be seen in the upper plot
of Fig. 10 where this branch in shown again on an expanded
scale.

On the other hand, the behavior is quite different when �
is increased while L is kept fixed: Then the stationary solu-
tion branches are shifted towards larger r and, e.g., for L
=0.01 and �=−9 the stationary saddle has already moved up
to r�3.

One might expect that the very weak L� dependence of
the variation of the upper stationary branch with r also ex-
tends to its stability. But this is not the case as Fig. 11 shows:
r* as a function of � does not only diverge for a fixed L, but
also when the product L� is kept constant. In the latter case
the point of divergence is reached even earlier.

Not only r* but the TW branch as a whole is shifted to-
wards larger r with growing ���. This is shown in Fig. 12,
again for constant L�=−10−4. For a fixed L=0.01 this be-
havior is qualitatively the same �45�. We should like to men-
tion that for small L the convergence properties of our
Newton-Raphson algorithm for determining the TW solu-
tions become poor. This is reflected by the visible jitter in
some of the curves of Fig. 12.

We can conclude that neither the convection in the form
of stationary rolls nor TW convection which are the impor-
tant forms of convection in molecular mixtures for negative
separation ratios play a role in colloidal mixtures with large
negative �. Already at ��−1 the roll branch has lost its
stability and a TW branch does not even exist at moderate r
anymore.

FIG. 9. �Color online� Bifurcation diagram of stationary rolls
and traveling waves �TWs� for L=0.01, k=kc

0, and �=−0.2. Stable
�unstable� structures are represented by solid �dashed� lines.

FIG. 10. Bifurcation diagram of Nusselt number versus r of
stationary rolls for �=10, k=kc

0, and different negative � such that
�L� � =10−4. Top plot is a magnified part of the bottom plot.
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VI. CONCLUSION

We have studied the bifurcation scenarios in the Rayleigh-
Bénard system at very small L and large ��� as typical for
colloidal fluids using the Galerkin method and compared the
results to those for parameter combinations more typical to
molecular liquid mixtures.

In molecular liquid mixtures with a positive separation
ratio convection sets in at very small Rayleigh numbers com-
pared to the critical value of Rc

0�1708 in pure fluids. In
colloids the onset happens at even smaller R. We found a
power law Rstab	L /� to hold as predicted by the semiana-
lytic linear stability analysis.

The initial slope of roll and square structures defined as
the onset slope of the Nusselt number, on the other hand, was
found to be proportional to L�. This product also approxi-
mately determines the whole N�r� curve for both positive and
negative � such that the roll branches of molecular liquids
and colloids look very similar.

For colloids with positive separation ratios we found es-
sentially the same sequence of stable structures as for mo-
lecular liquids with squares being stable at small r, rolls be-

ing stable at large r, and oscillatory and stationary crossroll
patterns in between. For small L and the r interval where
crossrolls exist is very small as long as ��30. Squares and
rolls are stable in practically the whole Soret region r�1 and
Rayleigh region r�1, respectively. At larger �, however,
square patterns are strongly disfavored and instable against
crossroll perturbations in the Soret region except very close
to the onset.

For negative separation ratios and Lewis numbers typical
for colloidal solutions neither stable roll nor TW convection
is possible. The TW branch is shifted towards higher r with
growing ��� such that already for ���=O�1� TW convection is
not possible anymore at moderate r. The roll branch does not
move with growing ��� when L� is kept constant, but loses
rapidly its stability as R*, the Rayleigh number of the bifur-
cation from TWs to rolls, diverges.
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